To import a flat file with very large number of rows, data.table provides fread function.
library(data.table)
Data<- fread("data.csv", sep = ",", header = TRUE)
To aggregate the data set:
Agg <- as.data.table(iris)[, list(Avg_Sepal_Length = mean(Sepal.Length)), by = "Species"]
When aggregating multiple columns at the same time:
AggMC <- as.data.table(iris)[, list(Avg_Sepal_Length = mean(Sepal.Length), Avg_Petal_Length = mean(Petal.Length)), by = "Species"]
When aggregating all columns other than the grouping column:
AggAC <- as.data.table(iris)[, lapply(.SD, mean), by = "Species"]
When aggregating by multiple grouping columns:
AggMCMG <- as.data.table(CO2)[, list(Avg_Conc = mean(conc), Total_Uptake = sum(uptake)), by = c("Plant", "Type")]